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1 Preliminaries

1.1 Summary

This document presents a description of the Paris Region AI Challenge for
Industry 2023 carried out in collaboration between the Île-de-France region and
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RTE (Electricity transport network) with the support of Paris-Saclay University,
the ASTech and Systematic clusters, and Startup Inside.

RTE’s mission is to transport energy in the form of electricity on long-
distance power lines. This mission must be carried out while maintaining the
population and equipment safety, which requires monitoring lines at all times to
avoid overloading them and not leading to blackouts. RTE is currently deeply
engaged in the Energy Transition up to 2050 to massively integrate new renew-
able energies with the condition to keep a system that can be robustly oper-
ated. Changing the energy mix is essential if we want to generate carbon-free
electricity. However, it also poses other problems: the intermittent nature of
renewables, their unequal geographical distribution, and new uses of electrical
power. RTE has to accommodate these new means of power generation and
consumption.

The objective of this challenge is to create for the dispatchers of the power
grid (see pictures of a dispatching room 2)) a near real-time assistance module
offering recommendations for strategies aimed at safely managing overloads on
the electrical lines. In this year’s competition, a simulation environment allows
an artificial agent to act on the power grid scenarios at a 5-minute time step
resolution to learn how to operate it and further to be evaluated on its ability
to use robust strategies over time, avoiding any black-out. An expectation is
also to use this agent as an assistant, integrating trust considerations for the
human dispatcher. Finally, this assistant must favor strategies to make the most
of the renewable energies installed by limiting the emergency redispatching call
for thermal power plants emitting greenhouse gases.

1.2 Confidentiality

This document is not subject to any form of confidentiality and may therefore
be distributed freely.

1.3 Disclaimer on document

The information and data contained in this document are published for infor-
mation only and are not contractual. RTE declines all responsibility for any
errors or inaccuracies in the diagrams or explanations. These information may
be subject to change without notice.

1.4 Authors and contributors

Antoine Marot, Laure Crochepierre, Karim Chaouache and Benjamin Donnot
from RTE as well as Adrien Pavao and Isabelle Guyon from Paris-Saclay Uni-
versity have all contributed to writing this document.

We thank Clément Goubet and Jerôme Dejaegher from RTE as well as
Olivier Pietquin from Google and Pr. Madeleine Gibescu at Universiteit Utrech,
for their kind review and feedbacks.
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Figure 1: Map of RTE transmission power grid

2 RTE - The French Transmision Grid Operator

Réseau de Transport d’Electricité (RTE) has been the operator of the French
power transmission grid since its creation in the year 2000 and continuously
fulfills its public service mission for which it is responsible. RTE is the largest
European operator in its field with nearly 106,000 km of high and very high volt-
age lines (see figure map 1), interconnected with the powergrids of its European
counterparts within a large European power system.

Its role goes well beyond what the transmission of electricity evokes. Since
electricity can only be stored in limited volumes, it must be consumed as soon as
it is produced. At the heart of the electrical system, this role gives us first-rate
missions:

• Provide everyone, 24 hours a day, 7 days a week, 365 days a year, in France
and Europe, with access to an economical, safe, and clean power supply;

• Support and accelerate in the energy transition by welcoming renewable
energies and optimizing their contribution while informing public deci-
sions;

• Promote the development of the territories’ industrial fabric and partici-
pate in French companies’ competitiveness.

The challenges of energy transition and the Europe of Energy have led RTE
to initiate a profound change. Faced with an environment in the throes of
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technological, economic, and social upheaval, RTE must continue its transfor-
mation in order to respond to European, national, and territorial challenges by
anchoring the performance of its model.

Backed by its powergrid and invested in its public service mission, which is
vital for the country and the life of its citizens, RTE works every second to guar-
antee long-term access to carbon-free electricity. From the European Union to
the French territories, the ambitions displayed in terms of the energy transition
are considerable. They will lead to profound changes in the electricity sector as
a whole: development of renewable energies, increase in exchanges between Eu-
ropean countries, new consumer behavior, self-consumption, emergence of new
uses, development of electricity storage, etc. These changes are also integrated
into the consideration of a technological and digital revolution: new forms of
communication, dematerialization, artificial intelligence, geolocation, etc.

In 2021, RTE’s turnover amounted to €5,254,036,000. The group has 9,500
employees. More information is available on the website.

3 Energy Transition and Low Carbon Grid Op-
eration Context

In its action to tackle climate change 1, RTE must achieve the objectives of the
PPE (Multiannual Energy Program), cutting by half emissions due to the pro-
duction of electricity by 2035), and of the SNBC (national low carbon strategy)
for carbon neutrality in 2050. For this objective to be reached, a massive inte-
gration of intermittent renewable energy (solar and wind) is necessary. Energy
Futures scenarios 2 indicate, for example, a majority share > 50% to reach in
the mix. And this integration will have to be done at a very sustained pace:
there is an urgent need to act whatever the scenario.

This new variability will lead to major challenges in terms of operating
the power grid, which will have to be more flexible and responsive, with more
complex, rapid, and numerous decisions for dispatchers [12]—always ensuring
the essential function of a power grid: supplying consumers while avoiding any
blackout, despite this increased complexity. To get an idea of the cost of a
blackout, a simulation of a one-hour 3 blackout on March 8 at 2 p.m. in the
Paris region could cost around 150 million euros.

An assistant [13, 19] thus becomes key to supporting dispatchers in these
decisions within this new environment. New dispatching rooms for the RTE
power grid are also currently being deployed, starting with the inauguration of
the Paris one in 2023 (see illustrations 3 and 4) (the first in 20 years!) to allow
more efficient operation of the grid and meet the challenges facing RTE. This
marks a new era for the operation of the grid.

1RTE action to tackle climate change https://www.rte-france.com/rte-en-bref/

nos-engagements/laction-de-rte-face-au-changement-climatique
2Energy Futures 2050https://www.rte-france.com/analyses-tendances-et-prospectives/

bilan-previsionnel-2050-futurs-energetiques
3Blackout simulator https://www.blackout-simulator.com/
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Figure 2: Control Room of the grid today

Figure 3: New control rooms opening in 2023

Figure 4: New operator’s desk in new rooms

6



The integration of these renewable energies, and therefore achieving the
objectives to act in the face of climate change, will be a success only if we can
continue to operate the grid under high safety conditions, providing operators
with these new tools accordingly [6]. In particular, a trusted assistant can
recommend strategies to deal with electricity congestion on powerlines. This
use case has thus been listed in the AI4Climate report4 from COP 26 in the UK
in 2021.

4 A Dispatcher Assistant: making recommen-
dation with anticipation

Today, human operators are working in real-time from control rooms to optimize
the power flows on electrical lines, handle maintenance and new equipment
integration, react rapidly to unplanned outages, and, most importantly, avoid
(very costly) blackouts. More details about their role and tasks can be found in
[17]

Today’s operations They are highly trained engineers as their job requires
thorough studies, careful planning, and complex decision-making processes rather
than simply reproducing pre-established patterns. They heavily rely on simu-
lation tools coupled with real-time and forecast data. But they have little
decision-making support tools, such as assistants. When they need to solve a
problem, they mostly manually explore solutions and validate their decision in
their simulation tool. They can modify the line connectivity on the grid to
reroute power flows but also modify some production, limit consumption by a
few percent, or even use battery storage today to change the power flows on
the grid. This is a large set of possible flexibilities, among which they have
to identify the effective ones in a given context. Yet they operate mainly with
experience and manual simulation to determine relevant remedial actions.

Tomorrow’s sequential operational problem As the grid gets pushed to-
wards its limits, decisions become more numerous and a lot more interdepen-
dent. Solutions should not only be effective at one single point in time but over
a larger time horizon. Often an action will be beneficial for some issues, but
will create more risks elsewhere: there is a permanent trade-off on a grid with a
fixed capacity. Actions should also be implemented with the right anticipation
given their adequate activation time: switching line connectivity is quick, but
starting production can sometimes take a few hours. So decisions will need to
indeed consider the full underlying planning problem of power grid operations.
This is a continuous sequential decision-making problem.

4AI4Climate COP 26 report https://www.gpai.ai/projects/climate-change-and-ai.

pdfs
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Figure 5: A simple scenario where contingencies are anticipated in multiple parts
of a grid with resulting congested periods (in red). Several remedial actions
(green dot) with different setup duration (blue arrow) are possible. Choices
have to be made with anticipation and coordinated.

Figure 6: A screenshot of SEA (safety by anticipation) supervision tool. Each
row relates to a contingency of interest, and columns are different forecasted
time horizons considered. Indicators are green if no issue remains, orange if no
issue remains but the effective strategy is not a preferred one, and red if no
selected strategy works. An empty indicator means no issue is forecasted.

New tools for recommendation Operators already have some latest (but
non-AI) tools that simulate for every upcoming hours over the day the possible
consequences of a contingency, such as an unexpected outage on a power line.
In case of resulting congestion, this tool allows to simulate automatically 2
to 6 preferred remedial action strategies a priori, with green, orange, and red
indicators (see Figure 6). Sometimes operators already have to iterate among a
list of 100 possible strategies. As system context changes more rapidly, selected
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strategies are not always effective on a new situation, and operators have to
iterate among their list to find effective contextual solutions.

In comparison, the assistance recommendation module will bring new capa-
bilities such as :

• taking into account a larger grid context and a time horizon to make more
effective recommendations

• providing recommendations on demand regarding new issues to consider in
upcoming hours or close to real-time. This offers a lot more interactivity
without heavy simulation iterative loops

• indicating its confidence in the effectiveness and robustness of its recom-
mendations, analogous to green and red indicators

In terms of time horizon, the next two-hour horizon can be considered as
the operational window, that is the execution phase where it is harder to take
time for more studies. Beyond two hour horizon, this is the anticipation phase,
during which issues can be studied and related strategies and remedial actions
prioritized: this is a configuration phase of an operational plan. The solution
that will be developed for real operations should become a game changer within
the operational window and later improve the anticipation phase as well.

5 L2RPN problem setting

In this section, we first recall the objective of the formulated challenge. We then
formalize the decision-making process and further describe its features.

5.1 Objective

We propose a challenge that will test the abilities of artificial agents at horizon
2030-2035 energy mixes on the way towards 2050 scenarios [1]. The goal is
to control electricity transmission in power networks while pursuing multiple
objectives: meeting the production/consumption balance, minimizing energy
losses, keeping people and equipment safe, and, above all, avoiding catastrophic
blackouts. Blackouts happen when a large portion of consumers cannot be
supplied anymore because the system is too unstable or because a cascading
failure of powerlines happens and no safe electrical path remain to transport
electricity to them. Recovering from a blackout often takes at least a few hours,
if not days sometimes.

The importance of this application not only serves as a goal in itself but also
aims to advance the field of Artificial Intelligence (AI) known as Reinforcement
Learning (RL), which offers new possibilities to tackle control problems. In
particular, various aspects of the combination of Deep Learning and RL (Deep
Reinforcement Learning) remain to be harnessed in the domain of electric power
networks. This challenge belongs to a series started in 2019 under the name
“Learning to Run a Power Network” (L2RPN) (see also Figure 7). In this new
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Figure 7: Series of L2RPN competitions since 2022. Each one scaling up the
problem in terms of size and realism.

edition, we introduce more realistic scenarios proposed by RTE to reach carbon
neutrality by 2050, retiring most fossil fuel electricity production, increasing
proportions of renewable and nuclear energy, and introducing batteries. Here
an artificial agent should show how well it is able to control flows in power lines
on the grid to avoid blackouts.

5.2 Problem formalization

From a theoretical point of view, the L2RPN problem can be seen, at first
glance, as a Markov Decision Process (MDP) well known in the Reinforcement
Learning framework as depicted in Figure 14.

An MDP is defined as a tuple (S,A, p, r), where an agent interacting with
an environment observes a state st ∈ S and takes an action at ∈ A at time
step t. From state st and taking an action at, the agent arrives in a new state
st+1 of the environment with probability p(st+1|st, at), and receives a reward
r(st, at, st+1) as an instantaneous signal on the ”quality” of its action.

The environment considered in L2RPN is “episodic”, meaning it lasts a fi-
nite number of time steps Tend. Note that Tend is not necessarily deterministic
(i.e. known before the start of ”the game”). Indeed, for the L2RPN environ-
ment, Tend depends on the actions done by the agent but also on random events
(e.g. random line disconnections). Tend is variable but bounded since it can not
exceed a fixed maximum duration Tmax (equal to one week in the challenge):
1 ≤ Tend ≤ Tmax.

10



Figure 8: The classical RL framework of an agent interacting over time with a
system’s environment under an MDP. Note that any kind of agent can be de-
signed and evaluated, such as heuristics or optimization, and it is not restricted
to RL agent (Figure from [18])

To act on the environment (i.e. to choose its actions), the agent must
have what is called a ”policy”: A mapping from states to actions Π(st) = at.
This mapping can be deterministic (a state/action (algorithmic) association)
or stochastic (a probability distribution among the actions. The distribution
depends on the state).

In the MDP setting, the agent must find a way to maximize the reward it
gets from the environment, not only for the current step, but over the whole
episode 5 . Its goal is to maximize the total amount of (discounted) reward ac-
cumulated over the episode. The MDP problem can hence be stated as ”finding
the optimal policy” to maximize the (expected) cumulative (discounted) reward
over the episode(s).

By construction, MDPs respect the Markov property, which states that all
the information necessary to generate st+1 can be found in st and a.

In the L2RPN environment as implemented in the grid2Op framework, how-
ever, the agent is not given the exact (physical/electric) state st of the environ-
ment at time t, but just an observation ot of this state.

In absolute terms, this observation can be considered incomplete (it could
be completed, for example, by more electrical data on the power network or by
known information about the planned production schedules of the generators)
and/or imperfect (limited precision of the sensors, measurement errors, noise,
imperfect system model, etc.).

This makes the L2RPN setting not strictly and formally a Markov Decision

5It is important to see that the reward received at each moment does not depend only on
the action performed at that moment but on the whole action sequence from the beginning.
Some ”good” actions may not be rewarded until late in the episode. This makes the problem
harder than when there is an immediate association between the action and the reward, as it
is the case, for example, in the (Machine Learning) classical bandits problems.
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Process (MDP) but rather what is called a Partially Observed Markov Decision
Process (POMPDP). In practice, however, considering L2RPN as a ”simple”
MDP is not a bad approximation to find, most often a near-optimal policy.
Yet to solve it, one needs to consider several resources to manage constraints
associated with it in the form of a credit assignment problem. Available actions
or times before disconnection or recovery are examples of budget to deal with.
To manage it, an agent has to make a sequence of decisions, with rewards
that may only come at some later timestep, such as only when a blackout has
eventually occurred.

Figure 9: L2RPN quick overview: An agent first observes the power network
state at time t with flows in the power lines and injections ( productions and
consumptions). An overload (red line) occurs on the grid: the agent gets a
negative reward from the environment since the grid is at stake. The agent takes
a node-splitting remedial (discrete) action at time t. Three node splitting actions
would have been possible at this time step. It is easy to see that the number
of possible node-splitting actions increases exponentially with the number of
switchable elements. After this action, the problem (line overflow) is solved,
and the agent gets a better reward.

To continue on the formalization aspects of the problem, we can define an
”episode” e, successfully managed by an agent up until time Tend (over a sce-
nario of maximum length Tmax) by the sequence:

e = (o1, a1, o2, a2, . . . , aTend−1, oTend
) (1)

where ot represents the observation at time t and at the actions the agent took
at time t. In particular, o1 is the first observation, and oTend

is the last one:
either there is a game over (e.g. a blackout) at time Tend or the agent reached
the maximum time of the scenario: Tend = Tmax.

At the heart of an MDP (or a more complex POMDP), lies the environment.
Most of the time, this environment is implemented through a simulator. Indeed,
in L2RPN, we need a simulator that can accurately mimic the behavior of a
power system, regarding physical laws and operational rules, over a specified
time period referred to as a scenario.

To achieve this, the simulator must be provided with data, specifically time-
series data describing the electricity (power) injections in the network. These
data are referred to as time series or chronics. Note that this last word derived

12



from the French ”chroniques” must be understood in the L2RPN context as
just ”time-series data”. These chronics can sometimes bring high stochasticity,
such as with wind power or when considering unexpected line disconnections
to be robust too. This makes solving this overall MDP challenging. Figure 9
illustrates the L2RPN MDP problem.

The next section will detail the specific characteristics of the simulation
environment (simulator) used, as well as the chronics. Additionally, we will also
describe how the competition is organized on an online platform, including the
metrics used to rank and evaluate participants.

5.2.1 The simulation environment

Grid2Op The L2RPN competition requires a library/module that can sim-
ulate a power system within a reinforcement learning framework. To meet
this requirement, RTE has developed Grid2Op [4], a Python module that con-
verts the operational decision-making process in a Markov Decision Process
(S,A, Pa, Ra) [2] setting as described in section 5.2. This module discretizes
the time in 5-minute time steps (this is representative of the operational pro-
cess used today in which operators receive new grid snapshots every 5 minutes).
For example, a one-day scenario would be divided into 24 ∗ 60/5 = 288 time
steps. Given a current state st ∈ S and an action at ∈ A, from the agent,
Grid2Op can calculate the power flow (the amount of electricity flowing on each
power line) at the next time step st+1. To do this, it will need the time series
at time t + 1. We detail the generation of these (time-series) data in the next
paragraph. Additionally, Grid2Op can use the Gym interface developed by Ope-
nAI [3] to interact with an agent. A set of starter notebooks is provided with
the grid2Op (Python) package to simplify the process of developing an agent.
The use of these notebooks allows the participants (to L2RPN the challenge)
to create efficient agents with limited prior knowledge of power systems, mak-
ing the competition accessible and geared more towards AI (more specifically
Reinforcement Learning) than electrical engineering.

The grid In this year’s challenge edition (2023), we use an adapted version
of IEEE 118 grid with high renewable penetration [16]. It can be visualized in
Figure 10 with productions and consumptions. Its grid topology allows for more
than 100 000 unitary actions, the basis for a huge combinatorial action space.

Energy Mix The set of productions allows us to define what is known as the
energy mix of the system. It is the share of each type of production (nuclear,
thermal, wind, solar, etc.) in the total electricity production over a considered
period, such as over a year. This year’s competition represents the target electri-
cal mix reached by 2035. While today renewables (apart from hydroelectricity)
represent 10% of the total produced electricity6, the L2RPN’2023 challenge will
propose to handle the power grid with a higher percentage with up to 30%7.

6Bilan électrique 2021 par RTE
7Analyse des scénarios RTE - Commission particulière du débat public
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Figure 10: IEEE 118 grid illustrated with the different generator locations with
types (solar, wind, hydro,thermal,nuclear

)

Chronics In order to make Grid2Op work and represent the target energy
mix, we must have time series describing the electricity injections into the power
grid, referred to as chronics. These chronics provide the amount of electricity
injected into the network by generators, loads, and batteries at each time step.
Generators inject a positive amount of electricity while loads inject a negative
amount, and batteries can inject either a positive or negative amount depending
on whether they are storing or delivering electricity. It is important to note
that these injections considered with the energy losses (due to the Joule effect
in the grid) must always sum to zero for the power grid to function properly. To
generate these chronics, we need a detailed description of the architecture of the
power grid: Consumption points (loads) and power generators (type, maximum
production, operational constraints, etc.). We also need realistic data about
weather conditions (temperature, wind speed, cloudiness, etc.). These data are
mostly obtained from past and current RTE studies.

The Chronix2Grid (Python) package, created by RTE, uses these data about
the grid to generate time series data, an example of which can be seen in Figure
Fig. 12.

The set of productions included in the time series allows us to define what is
known as the energy mix of the system. It is the share of each type of production
(nuclear, thermal, wind, solar, etc.) in the total electricity production over the
considered period.

In order to generate the 2023 Challenge edition input time series, we have
prioritized the use of renewable energy and set penalties on the use of fossil fuel
generators (referred to as thermal) in Chronix2Grid. As a result, we were able
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Figure 11: L2RPN 2023 energy mix averaged over a year and along a week. It
is representative of expected mixes in France for 2030-2035

Figure 12: Example of time series representing the energy produced by each type
of production at each time step, as well as individual loads. This illustrates their
different dynamics.

to create the time series with an almost carbon-free energy mix, with less than
8% of electricity being generated by fossil fuels.

We provide a few dozen of years worth of scenarios for participants to train
their agents on. Additionally, through the chronix2Grid package, we allow them
to generate more scenarios with the same specifications (energy mix and network
parameters).

5.2.2 Setting recapitulation

We summarize the setting of the problem to be solved illustrated in Figure 13:

• Environment. The environment is episodic, running at a 5-minute res-
olution over a week (2016 timesteps). The core part of the environment
is a power network, with substations (nodes), some containing consumers
(load) or production (generation), and interconnecting power lines (edges).
The power lines have different physical characteristics) represented as a
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Figure 13: Illustration of L2RPN Environment: productions and loads x(t),
events Ev(t) and a grid topology τ(t) induces flows y(t) in every power line that
the agent needs to manage.

graph. The industry standard synthetic IEEE 118 network is used for this
competition. Realistic production and consumption scenarios are gener-
ated for the network (input time series).

• Observation space. Complete state of the power network: all informa-
tion over power nodes (electricity produced and consumed) and flows of
each power line. A more detailed description is given in Section A.3.

• Action space. Four types of actions are allowed to intervene on the grid:

1. Line switching actions: connection/disconnection.

2. Topology changes (node splitting). (2)

3. Power production changes/curtailment.

4. Storage actions (storage or delivery from batteries).

It is worth noticing that the action space is very large when compared
with some well-known classical problems from the Reinforcement Learning
literature. Indeed it contains tens of thousands discrete actions (Line
switching actions and topology changes) along with a high dimensional
(almost 80 dimensions) continuous action space (production changes and
storage actions). A more detailed description of the action space is given
in Section A.4.

• Operational Rules It is also important to know that to keep close to the
reality of power grid operations, actions in the grid2Op environment must
meet several conditions before being executed. As an example: An agent
can not act on the same line twice before a cooldown time. The same
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condition applies to topological changes: The agent must wait a certain
time before acting on the same substation. There are also limitations
associated with changes on the production levels (ramp-up / ramp-down)
of the generators. All these limitations and constraints are detailed in
the grid2Op documentation. Finally, an other rule in the environment
determines how much time a line can be overloaded before automatic line
disconnection by protections.

• Reward. The reward is constitutive of every MDP and is probably more
important than usually thought. It is important to set it carefully because
it can have an important impact on the ability of an agent to learn effi-
ciently. This is why we give the participants the ability to design their
own reward function.

However, the grid2Op framework comes with a set of predefined reward
functions. Some of these grid2Op rewards are also used to compute the
leaderboard metric. This is detailed in Section 6.4.1.

• “Game over” condition. What we call a ”game over” refers to the
feared event where the network is unable to fulfill its main mission: meet-
ing the power demand from the production. The agents must obviously
avoid it. Note that the most severe (and common) way to end with a
game over occurs when some lines overload (i.e., the electric current going
through them exceeds their physical capacity), leading to their brutal dis-
connection from the network and putting an extra stress on the remaining
lines, which in turn leads to more and more overflows (cascading failures)
ending with what is called a blackout. The whole process can be very
fast (less than a time step), so the agents must be very careful about line
overflows.

In the grid2Op environment, a game-over is triggered if the total elec-
tricity demand is not met anymore (Significant production/consumption
imbalance). This is taken into account in the leaderboard metric as a
(penalizing) blackout cost.

• Expected and unexpected events. To get close to a realistic situation
and to make the competition more challenging, the simulation of the power
grid includes some additional ”expected” and ”unexpected events”. The
expected events are related to the planned maintenance of the power grid.
From time to time, some lines are switched off for some (fixed) duration
to allow their maintenance in safe conditions. ”Unexpected events” are
related to equipment failures on the network. These failures are simulated
in the grid2Op framework by having a special agent called ”the opponent
agent” with the mission of disconnecting some lines at random in the
network. At random but not ”completely at random” as it is constrained
to keep a reasonable level of aggressiveness to avoid turning the (very
serious) control of the power grid problem into some kind of unrealistic
”arcade game”. Not completely at random also, because the opponent
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Figure 14: The RL loop with the opponent (Figure from [14]). Note that in
the 2023 competition, the opponent does not actually use the reward signal as
the (general) figure seems to suggest. It is still a ”simple opponent” that uses a
predefined static strategy. In particular, it does not learn.

chooses preferably the most electrically loaded lines to disconnect them.
As the state of the electrical network depends on the past actions of the
competing agent, we see that there is a causal link between the actions
of the agent and those of the opponent. Formally, we can see the L2RPN
interaction loop extended as in figure 14

• Forecasts and simulation. In real network management, operators of-
ten use simulations to test their future actions, based on consumption
and/or production forecasts on a particular point of the network. It is
therefore coherent to allow an (artificial) agent to have such forecasts in
the grid2Op environment in order to find and test its actions.

Until recently, the gri2dOp environment only provided consumption and
production forecasts for the next time step, 5 minutes ahead. These fore-
casts are in fact implemented in the ”simulate” methods 8.which allow
to simulate an action on the next time step based on forecasts for this
moment.

In the new version of grid2Op, the environment will provide forecasts on
a longer horizon of 60 minutes.

Of course, these forecasts are not perfect. They are subject to errors,
calibrated to be comparable to the forecasts used today in the management
of the real power system.

8See the ”simulate” method of the ”Observation” class as well as the more sophisticated
“Simulator” class in the Grid2Op documentation
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Figure 15: Example of load forecasts at different time-horizons: the real load and
the one that were forecasted with 30 and 60 minutes time-horizon. We observe
than 60-minute forecast is less accurate than 30-minute forecast on average as
expected.

5.3 Lesson learned from previous competition

Over the environment design, competition phase, and feedback iterations and
improvements over the years, we can highlight some interesting insights and
lessons to build upon.

ML and RL as a promising technology for near real-time sequential
and combinatorial topology control The initial L2RPN competition [11]
demonstrated the potential of ML and RL to help control the topology of the
grid (a high-dimension discrete and combinatorial action space) [7] while taking
into account operational constraints. At this stage, on the smallest IEEE14 grid,
expert rules could still achieve decent performance, ranking 5th. This changed
when scaling up the problem for NeurIPS competition [10], where except for an
advanced adaptive expert system [8], no hard-coded rules could achieve inter-
esting performance. ML and RL also showed an advantage in terms of inference
time compared to optimization approaches which is an important consideration
for near real-time decisions. The winning team from Baidu showed an interest-
ing Deep RL with evolutionary training solution [20] that won by some margin
on the robustness track. Yet, those more advanced agents would still fail on
one-third of week-long test scenarios. This failure rate was a bit improved in
the latest competition by a solution transposing AlphaZero approach to grid
topology control [5], but not nearly close to the level of reliability required to
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deploy autonomous agents on the grid. They will rather be used under human
supervision.

Nevertheless, one striking feature was their ability to sometimes meaning-
fully combine sequences of 5 or more topological actions to survive very difficult
situations when other agents and perhaps even a human will fail. Such combi-
natorial action depth is actually beyond what humans are able to explore today
and can already be viewed as a unique achievement.

Reducing the action space Except for the Adaptive Expert agent, all other
agents (learned, optimized, or heuristics) have considered as a first step a re-
duction of the topology action space below 1000 unitary actions. A learning
agent that does not disregard some actions before training remains to be seen.
Perhaps disregarded actions would have proven to be useful and helped better
manage the grid in some situations.

Mixing discrete and continuous actions Properly combining those actions
is important. On the one hand, discrete topological actions are often preferred
since they are cheap and carbon-free. The Alphazero-like agent demonstrated
that it could avoid up to 90% of C02-emitting redispatching remedial actions.
On the other hand, they are not always enough to solve difficult issues. In that
case, continuous actions should be combined. The latest agents have mixed
topological actions with more continuous ones (redispatching, curtailment, bat-
teries) but as separate modules that are merged in an ad hoc fashion. Control
with continuous actions has so far relied on optimization formulation considering
only the current timestep (known as optimal power flow). A learning module for
continuous actions remains to be seen, not to mention an agent learning jointly
to control those two kinds of actions in a more optimal fashion.

The opponent - the main trigger of blackout In real-life, dealing with
unexpected line disconnections that makes the grid weaker, decreasing its overall
electricity transfer capacity, is one of the most challenging. In our environment,
most of the agent failures are also observed after opponent attacks [14] that
corresponds to unexpected line disconnections. Being robust to such events is
one of the main challenges for agents in operating a power grid. Those agents
hence need to learn effective strategies. To do so, most advanced agents often
use preventive actions ahead of attacks to mitigate the risk of the most difficult
ones.

Using simulation for safe decisions One particularity of our problem set-
ting is that the agents can use a simulator at inference time. However, limiting
the use of simulation is preferable to make faster decisions in a given time bud-
get. Having a fast inference is where ML actually makes a difference. Yet all
agents have so far used some residual simulation to robustly validate their choice
of action. Most often, a model infers the most promising actions, but the final
choice is then only done based on the results of their simulations for the next
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time step. This seems a reasonable approach that human operator actually uses:
when they are about to run an action on the grid, they simulate it one last time,
as the cost of doing a wrong action can be high.

Bigger computing budget for training wins In previous competitions, the
participants used their own infrastructure for training their agents. The winning
agents often required significant computing resources to be trained. That is over
100 CPUs simulating episodes in parallel to learn from, with a training run of at
least one day. Having a bigger computing budget during training most probably
made a difference. This year, we would like to make fairer comparisons through
the sim2Realistic track (see subsection 6.2. In particular, in this track, it is
expected that participants train an agent with the same computing budget we
give them.

Introducing the assistant feature In high-security environments such as
the power grid, agents are not expected to be ever deployed completely au-
tonomously, i.e., to operate the grid without human supervision. But they are
still expected to be very useful if used within an assistant to human operators.
To facilitate such an integration, such agents need to be trusted. It is hence
important that the agents estimate their degree of confidence when they make
action suggestions. To that end, we introduced an additional task: predict con-
fidence. This will be evaluated in the Assistant track (see section subsection 6.3)

This year assistant feature is an improvement and partly a reformulation of
the first iteration on this idea run for the ICAPS competition [9]. A drawback
of the ICAPS approach, which required the agent to issue an alarm 30 minutes
prior to an anticipated blackout, was that it resembled predicting the timing of
an attack - a task that is inherently unpredictable.

In this year’s challenge, we rather formulate it as ”If this attack happens,
are you confident in your ability to manage the grid in the following steps ?”.
These alarms are also now considered at the granularity of lines as in operational
applications today and not at the level of areas.

Another proposed assistant feature by another team is the ability to make
several recommendations and express preferences over the kind of actions the
assistant should highlight (a weighting factor between topological and redis-
patching actions) [6]. This is of interest but will not be directly evaluated in
this competition.

Undesirable behaviors Over competitions, we have seen some undesirable
behaviors from various agents that would be regarded as unacceptable for human
operators. Some agents sometimes oscillate between configurations (or actions),
for some period of time. This can be seen as unstable and risky, as in managing
critical systems the least actions to stable reference configurations are preferred.

When in difficult situations, some agents also just desperately run topological
actions, which could be interpreted as a sequence but which just happens to
be a very reactive or greedy behavior. Running through topological actions
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with such high combinatorial depth is not desired except if really necessary.
Operators prefer more straightforward and simpler solutions to stay around
more well-known configurations. The Grid2viz and Gird2Bench packages (see
subsubsection 6.5.3) are tools to study more in-depth such behaviors.

Limiting those behaviors would hence make the respective agents more trust-
worthy. Would it be through more constraints in the environment or better cost
functions? This remains an open question.

We also a posteriori discovered pitfalls in competition design for two compe-
titions at WCCI 2020 and WCCI 2022. At WCCI 2020, the winning approach
learned this strategy, which allowed to disconnect and reconnect lines more
frequently, using this to circulate the overload between power lines until the
situation is less tense. This was not really solving the problem the way an op-
erator would expect. This came from a limitation in the environment at that
time, that was then improved. In last year’s WCCI 2022 competition, one key
factor to be among the winning teams was to curtail as much renewable energy
as possible. This is not a desired behavior to tackle Climate Change in the end.
It was not penalized enough, and we made a better cost function this year in
that regard.

Participant feedback appreciated In this year’s competition, we encour-
age participants to provide an analysis of their agent behavior, feedback on
environment limitations, and suggestions on possible improvements, much like
a collaboration with the organizers, which will matter once the project of the
winning team is launched. This will be considered in the evaluation (see sub-
subsection 6.4.5).

6 Description of the new competition setting

6.1 A competition in two tracks

For this competition, our aim is to test various aspects of the proposed method-
ology. Each participant will be required to submit entries for two distinct tracks:

• The “Sim2Real” track, where we will evaluate the adaptability of the agent
to function in an environment different from the one it was extensively
trained on.

• The “Assistant” track, where we will assess the agent’s ability to collabo-
rate efficiently with a human operator.

Both tracks are described in more detail in the following subsections.

6.2 Sim2Real track

In all the previous “L2RPN” competition series, we used a simulator to model
the power grid and to carry out both the training and the evaluation of the
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agents. This is justified because the agents cannot be trained in the “real world”,
for obvious security reasons. However, when deployed in practice, an agent will
have a simulator available for training and for probing the effect of proposed
actions at inference time (by using the observation.simulate(action)), but the
effect of its action will have consequences in the real world. No matter how
accurate a simulator is, it will never perfectly emulate the real world. Hence,
our previous evaluation setting biased results favorably.

To remedy this problem to some extent, we make use of two simulators: a
more detailed one emulating the real-world that we call ”real-world emulator”
and a simpler one representing a ”simulation tool” . The ”simulation tool” is
made available to the agents for training and inference. The ”real-world emula-
tor” is used by the organizers only for evaluation purposes. This is implemented
in practice by leveraging different fidelity of our power grid simulator grid2op
that will represent more or less complex dynamics. It is simple to toggle the
simulator behavior for the ”simulation tool” with the obs.simulate function, a
feature also made available to the agents.

We expect, with this new more realistic setting, that the performance of
the agent will degrade if only trained with a ”simulation tool” with no more
consideration of the real-world. De facto, they will have to perform some kind
of transfer learning to be ready to adjust to distribution shifts. In the real
setting, agents would be able to retrain and fine-tune their agents only based on
pre-recorded real-world historical data. As no such historical data is available
on such synthetic grid, we make our competition setting close but somewhat
different from it, by allowing agents to generate their own historical data on a
limited number of scenarios while interacting with the ”real-world emulator”.
This is why this track is named “Sim2Real”: agents can be retrained before
being evaluated in this more realistic setting.

To summarize, the goal of this track is to assess whether agents can be
generic enough to be used on the real grid. To do that, participants will submit
agents that will be tested by the organizers on an environment that uses a more
realistic simulator than the one available to the agent at training and inference
time. Before being evaluated, the agent will have the possibility to be fine-
tuned on the environment used for evaluation by the organizers. We emphasize
that from the ”grid2op” point the “training” power grid and the “test” power
grid will have exactly the same properties: same elements at the same location,
same number of actions, same operational constraints etc. Only the physical
parameters and the underlying simulator will be different.

6.3 Assistant track

The assistant track will require the agent to send warnings by anticipation to
a fictitious human operator. These warnings should be raised in case the agent
is not confident about its capabilities to run the network safely for the next 60
minutes, if a contingency event occurs. The list of considered contingencies is
the set of attackable lines in the competition. At each timestep, the agent can
decide to send a warning, or not, for each considered contingency. A desired
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behavior is that an agent should not send too many warnings to keep the human
operator concentrated on his or her job, and that a warning should be persistent
through time (not switching on and off from a time step to the next). To be
consistent with this behavior, the agent is given a limited “attention budget”
which will limit the number of allowed warnings. More precisely, the attention
budget decreases, when the agent warns the human. This element is further
detailed in subsection A.6.

This assistant feature will be evaluated in the next 60 minutes an unexpected
line disconnection has occurred: either a blackout happen or not, hence the
confidence of the agent was right or not regarding that contingency. In this new
competition, 60-minute forecasts are made available and could be used for this
assessment. See Figure 16 for an example of this mechanism explained. You
can further refer to subsubsection 6.4.4 for more details about the evaluation
score.

Figure 16: Example of agent warnings in red over time for 5 considered line
contingencies (among attackable lines). One attack happened on l4 at 10:05 and
the agent had a warning raised just before indicating it would get into trouble if
that was the case. Indeed at 10:35, less than 60 minutes later, a blackout occurs.
The agent was right about its low confidence and gets a positive evaluation on
this example. If it managed to continue beyond 11am, more than one hour after
the attack, it should have been confident. As it was declared not confident, it
would have got a negative evaluation

6.4 Evaluation

6.4.1 3-dimensional score for quantitative participant evaluation

To rank the participants, a score function is applied to evaluate the agent’s
performance through a numerical score.
The score for this competition will be exhibited along three dimensions that are
explained in the further paragraph:

• Operation score: it is based on the cost of operations of a power grid
that includes the cost of a blackout, the cost of Energy losses on the grid,
and the cost of actions. It ranges between [−100, 100].

• Low-carbon score: it is based on the amount of renewable energy cur-
tailed. The less renewable energy curtailed the more carbon efficient the
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grid operation is. It ranges in [−100, 100] with 0 meaning ”renewable en-
ergy sources have not been used at all (they have been entirely curtailed)
and 100 that every possible MW of renewable energy is used.

• Assistant score: it is based on the number of times an agent is right
about its confidence ahead of time to handle some contingencies, specifi-
cally line disconnection events. It also ranges in [−100, 100].

Each of these scores are detailed in below sections.
The overall score will be a weighted sum of these standardized scores, such

as

Score = 0.5×ScoreOperations+0.2×ScoreLow-carbon+0.3×ScoreAssistant

(3)
In any case, it should always be beneficial to complete a scenario rather than
falling into a blackout.

6.4.2 Operation score

As power grids are more and more modeled as live market exchanges, almost
all of the grid’s operational characteristics can be converted into a monetary
cost. Therefore, the score will reflect the realistic operational costs of a power
grid, which grounds the algorithmic performance of proposed agents in a very
real-world quantity: money.

• Energy Losses Cost: determined by multiplying the total electricity
lost due to the Joule effect (in Mwh) by the market price of electricity (in
EUR/MWh).

• Flexibility Cost: the sum of expenses incurred by the agent’s actions.
Changes in electricity production (e.g. curtailment or redispatching) have
a cost that varies based on the energy market, while using storage units
has a fixed cost per MWh.

• Blackout Cost: in case the agent fails to manage the power network
until the end of the scenario. This cost is calculated by multiplying the
remaining electricity to be supplied by the market price of electricity.

It should be noted that the cost of a blackout, as expected, is significantly
higher than the other two costs. This means that an agent who successfully
completes a scenario will almost always have a higher score than one who does
not, even if their actions are less expensive.

Yet energy losses cost RTE 500 million €/year, so a gain of 20% would
already save 100 million €/year. And if no flexibility is identified or inte-
grated on the grid, operational costs related to redispatching can dramatically
increase due to renewable energy sources as was the case recently in Germany
with an avoidable 1 billion €/year increase9 illustrated on Figure 17. For

9German power system operational cost https://allemagne-energies.com/2018/06/19/

allemagne-14-milliards-deuros-pour-stabiliser-le-reseau-electrique-en-2017/
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more details about the equations of these underlying costs, please refer to section
B.5.

Figure 17: Undesirable 1 billion/year operational cost sharp increase
in Germany in recent years after quick installations of renewables without
developing new flexibilities

Final cost of operations normalized Now we can define our cost c for an
episode:

coperations(e) =

Te∑
t=1

(closs(t) + cflexibility(t)) +

Tmax∑
t=Te

cblackout(t) (4)

The score of an episode is then a function of this cost, which is designed to
be maximized (-cost) and is scaled to fall within the range of [−100, 100]. The
score function is also normalized to have a score of −100 for an agent failing
directly from the start, of 0 for the reference doNothing agent, the agent that
takes no action at all and often ends up failing. 80 being the score of an agent
succeeding at the scenario with no improvement in energy losses and only using
cheap actions (ie no action on redispatching, storage units or curtailment), and
100 the score for an additional 20% gain in energy losses (while still not using
any costly actions).

6.4.3 Low-carbon score

The Energy Transition to meet the net-zero carbon emissions objective is pri-
marily driven by the proper integration and use of new renewable energies. This
score is here to reflect the ability of an agent over a scenario to use available
renewable energies at their full potential. This means avoiding as much as possi-
ble curtailement Ecurtail(t) of renewable energy Erenew(t), which would imply
redispatching on carbon-emitting power plants, hence an increase in carbon-
emissions.
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Rate Ecurtail(e) =

Te∑
t=1

Ecurtail(t)/

Te∑
t=1

Erenew(t) (5)

The score of an episode is then a function of this rate, which is designed to
be maximized (-rate) and is scaled to fall within the range of [−100, 100]. 100
being the score for no curtailment in the episode, 0 the score for a 20% rate and
−100 for a 50% rate.

6.4.4 Assistant score

This score evaluates how confident an agent was in its actions for handling
unforeseen line l disconnection events prior to occurring (confidence(l, t − 1)
True of False), for the next 60 minutes (12 timesteps) time horizon. Much
like a green or red indicator per considered contingencies, analogous to a real
application depicted in section 4. When such an event Evl(t) occurs for a given
line l at time t, the evaluation will look over the duration of the considered time
horizon to see how well such an event was handled. To make it more tractable
in this competition, we only consider line events among the list of nl attackable
lines, and not all powerlines.

If the event was well handled and (confidence(l, t− 1) was True), then the
agent gets 1 point. Otherwise, it gets a small penalty of -1 point.

If a blackout occurs, the evaluation considers the earliest disconnection event
in the considered time horizon prior to the blackout. The agent gets 2 points
if it was right about its confidence for that earliest event. Otherwise, it gets a
high penalty -10.

We hence have a trust score for each event occurring at some time tk over
some line l:

ctrust(Ev(tk)) =


1, if confidence(tk − 1, l) and no blackout([tk, tk + 12])

2, if not confidence(tk − 1, l) and blackout([tk, tk + 12])

−1, if not confidence(tk − 1, l) and no blackout([tk, tk + 12])

−10, if confidence(tk − 1, l) and blackout([tk, tk + 12])

(6)
A desired behavior is that an agent becomes confident most of the time in

its ability to solve situations and limits its number of warnings towards the
operator to help him focus its attention. This can be assessed by computing the
proportion of cumulated “green” indicators over the episode:

confidence rate(e) =
1

Te × nl

Te∑
t=1

∑
l

confidence(t, l) (7)

This metric will not be directly considered in the score, but will be provided
for feedback. It is nevertheless constrained in the environment through the
attention budget mechanism.
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Considering the occurrence of n such events in the episode e, the cumulated
score is:

ctrust(e) =

n∑
k=1

ctrust(Ev(tk)) (8)

The normalized cumulated score of an episode is 0 on average for an agent
running until the end of a scenario but with random confidence. It is -100 for an
agent encountering a blackout without any positive confidence points. It is 100
for an agent succeeding at the scenario and always confident about its ability
to deal with the attacks that happened during the scenario.

6.4.5 Other evaluation

For the choice of the Winner, the members of the Jury will assess the ranking of
the agents developed by the Selected Candidates and visible on the Challenge
platform, and the value of the answer given in the scientific file of the Selected
Candidates. The following criteria will be taken into account in particular, listed
in no order of importance:

• Good understanding of the problem;

• Frugality and simplicity of learning with an explanation of the process;

• Agent behavior consistency analysis for human assistant use;

• Feedback and suggestion on environment design pitfalls or limitations

• Prospects in terms of economic development and job creation.

• Ability to open-source solution modules

6.5 Competition organization and materials

6.5.1 Starting Kit

To facilitate participation and reduce the entry cost, we provide a starting kit:
a set of tools and tutorials to help participants getting started. The starting kit
is available on Competition SK.

It contains notebooks summarizing the problem and the competition setting,
several baseline examples that can be directly submitted, code to locally verify if
a submission is valid or not before submitting it on CodaLab and documentation.
The sample submissions (the code of a baseline agent) use the competition
dedicated API. Sample scenarios (time series of productions and loads) are also
provided. They are generated with the same criteria as those used to test
the agents on CodaLab, but they are obviously different as the latter are kept
undisclosed to the participants.

This is useful because it helps participants understand the problem they are
trying to solve and the context in which it occurs. It also provides an overview
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of the competition rules and criteria for success, which can help participants
tailor their solutions accordingly.

Regarding the simulated environment, the Python library used is Grid2Op
[4]. Here is an example of the most basic code, for those familiar with OpenAI
Gym, in order to overview the package:

import grid2op

# create an environment

env_name = "rte_case14_realistic" # choice of environment here

env = grid2op.make(env_name)

# create an agent

from grid2op.Agent import RandomAgent

my_agent = RandomAgent(env.action_space)

# proceed as you would any open ai gym loop

nb_episode = 10

for _ in range(nb_episode):

# you perform in this case 10 different episodes

obs = env.reset()

reward = env.reward_range[0]

done = False

while not done:

# here you loop on the time steps:

# at each step your agent receive an observation,

# takes an action,

# and the environment computes the next observation.

act = my_agent.act(obs, reward, done)

obs, reward, done, info = env.step(act)

The training loop can be simplified using a runner, as shown in the following
piece of code:

import grid2op

from grid2op.Runner import Runner

from grid2op.Agent import RandomAgent

env = grid2op.make()

nb_episode = 10

runner = Runner(**env.get_params_for_runner(), agentClass=RandomAgent)

runner.run(nb_episode=nb_episode)

Learn more in Grid2Op documentation10.

10https://grid2op.readthedocs.io/en/latest/
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6.5.2 Hosting on CodaLab

The L2RPN’2023 competition is implemented on the CodaLab Competitions
platform [15], enabling code submission, detailed outputs and providing a start-
ing kit.

Participants are required to submit their agent on CodaLab so it can be
trained and tested on the platform’s compute workers. Submitted agents are
blind-tested on the platform with new scenarios not known to the participants.
These new scenarios are representative of the different problems encountered by
power network operators.

The competition is divided into three phases:

• (0) Warm-up phase: Participants have the opportunity to test the starting
kit, request modifications to the provided computational resources and
packages,

• (1) Development phase: The computational resources and packages are
fixed, and participants receive feedback on their submissions through a
leaderboard. This phase allows the participants to train their model and
assess their performance on an unknown validation dataset, getting some
granular feedback on their agent survival time per scenario. Participants
can develop and improve their model iteratively and regularly.

• (2) Final phase: We re-evaluate only the last valid submission of each
participant on a new undisclosed dataset: the test dataset. This final
evaluation determines the final ranking. Note that the two undisclosed
evaluation datasets (validation and test) are specifically built by the com-
petition organizers to be representative of the diverse problems faced by
network operators, such as overflows due to high load, or high renewable
generation. The validation and test datasets are drawn from the same
statistical distributions.

6.5.3 Other Available materials - GridAlive

Regarding Grid2op, you can go through the getting started notebooks to get a
large tour of the framework features. For more information, also see its com-
prehensive documentation 11

You can refer to gridAlive12 platform as depicted in Figure 18 to find out
about these other relevant resources and materials in the Grid2op ecosystem.
You will find tools for data generation, agent baselines, agent analysis and
episode (re)play as well as for faster simulation.

11See Grid2op documentation:https://grid2op.readthedocs.io/en/latest/
12github GridAlive: https://github.com/rte-france/gridAlive
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Figure 18: GridAlive - Grid2op ecosystem with packages and materials available

Appendices

A Detailed description of data and simulation
environment

A.1 A Power Grid

This section focus on the description of the specificities of the electrical network
designs for the L2RPN competition.

Generators On a network, power is provided from multiple technologies using
different fuels which are all referred to as generators. They can be considered as
sources in the power network. Traditionally power was generated by large ther-
mal units burning fossil fuels such as coal, oil and gas. In recent years due to the
shifts in policy to decarbonize society and in the liberalization of electricity mar-
kets, generation sources have shifted to renewable, unpredictable, weather-based
sources such as wind and solar. These sources are often installed in geograph-
ically diverse and less populated areas and produce power far away from load
centres. Hydro and nuclear power stations, while not new, are carbon-free and
are also located relatively far away from load centres. The network needs to be
planned and operated in different ways, to incorporate geographically disperse,
variable generation sources and ensure that power is efficiently transmitted to
the load centres at all times.
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Transmission The transmission network is made up of transmission equip-
ment, overhead lines, underground cables, and substations that contain the
connections to generation sources and transformers. Electricity is transmitted
either using DC (Direct Current) transmission or AC (Alternative Current)
transmission system. Both AC and DC allow transmission at high voltage (thus
reducing current), but the main reason for using AC in power networks is that
it allows the raising and lowering of voltages using power transformers. Being
able to increase the voltage allows us to transmit electricity greater distances
due to the lower resistive heating losses (further detailed in subsection B.1).
DC is a simpler linear system than AC, which is more difficult as it introduces
non-linearities based on sinusoidal aspects of voltage and current generation and
three-phase transmission. The RL challenge will run on an AC powerflow, but
understanding DC powerflow is a good starting point to understanding power
network control.

Consumptions The goal of power system is to conduct electricty to substa-
tions, which then require transformers to lower the voltage to a level suitable
for homes and businesses to use. The transmission voltage ranges from 100,000
to 760,000 volts, while the voltage in homes is 220 Volts in Europe and 120
Volts in North America. The power network operator’s responsibility usually
ends once the power is delivered to the step-down transformer.

A.2 Line Outages

Across time series, events can happen such as maintenance operations and un-
planned lines disconnection. In order to maintain the network in a safe state and
keep on delivering reliable electricity everywhere even in difficult circumstances,
actions must be taken to keep/restore the network safety.

Maintenance - Planned outage Maintenance operations are regularly sched-
uled on the grid. When a powerline is “in maintenance”, the powerline is made
unavailable. During this time window, it cannot be reconnected by the Agent
before the end of this maintenance. These events are planned and informa-
tion about future maintenance is available in the Observation: time of the next
planned maintenance and its duration.

Opponent attacks - Unplanned outage In this serie of challenges, un-
planned line disconnections are modeled as an “opponent” who will attack in
an adversarial fashion some lines of the grid at different times (similarly to
cyber-attacks for instance)[14].

Its role is to simulate failures on the network at particular times. Thus,
the proposed agent must overcome these adversarial attacks and keep operating
the grid safely. At test time, the agent will eventually be tested against that
opponent on hidden new scenarios not presented in the training set, in order to
assess the robustness of your agent.

32



The opponent is designed so as to be as unpredictable as possible, since we
do not want the agents to learn and predict the behaviour of the opponent and
adapt specifically to it. Attack times are also random, drawn according to an
exponential distribution (geometric distribution in discrete time) calibrated to
have roughly one attack per day on average but not always exactly one per day
as before. However this year will introduce opponents spread over 3 areas of the
IEEE 118 grid, called a multi-area opponent. Hence the number of attacks will
triple. The durations of the attacks are also changing following an exponential
distribution with a within a duration constraint of 2 to 8 hours. See [9] for more
details on the opponent.

In order to reflect the idea that the most electrically loaded lines are gen-
erally the most prone to failures, we have weighted the probability for a line
of being the object of the current attack by the load factor of the line. In this
year challenge multiple attacks are possible with a maximum of 3 simultaneous
attacks, 3 being the number of opponent areas.

It is important to note that for fairness the attack times and durations are the
same for everyone in the evaluation scenarios (even if these times and durations
are unknown to the participants), but not necessarily attacks on the same lines.

A.3 State space

At every step, an agent can observe the complete state of the power network. It
includes all information over power nodes (electricity produced and consumed),
flows of each power lines, and more. After each action, the simulator computes
the next state of the environment and the agent creates a new observation. It
is described in the Grid2Op environment by an Observations with the following
information, as described in Table 1

An exhaustive description of observations is provided in Grid2Op documen-
tation.

Future timesteps are associated with forecasts with similar attributes to the
observations, at intervals of 5 minutes and for a horizon of one hour.

A.4 Action space

There exists five families of actions accessible in the Grid2Op environment13:

topological action : topology can be changed by switching on and off power
lines or reconfiguring the busbar connection within substations. The total
number of topological configuration is exponential with the number of the
lines in the grid. (discrete)

storage action : defines the setpoint for charging and discharging each storage
units such as batteries. (continuous)

13See Grid2op documentation for more details on the action space
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Group Name and description Type Size

Datetime

day int 1
month int 1
year int 1

week of the year week of the year int 1
day of the week day of the week int 1

hour int 1
minute int 1
seconds int 1

Scenario
current step current step in the scenario int 1

max step maximum number of step int 1
time next maintenance steps to next maintenance int n line

duration next maintenance int n line

Generator

gen p active power float n gen
gen q reactive power float n gen

gen v voltage magnitude float n gen
gen theta voltage angle float n gen

Load

load p active power float n load
load q reactive power float n load

load v voltage magnitude float n load
load theta voltage angle float n load

Line origin

p or and p ex active power float n line
q or and q ex reactive power float n line
a or and a ex current flow float n line

v or and v ex voltage magnitude float n line
and extremity theta or and theta ex voltage angle float n line

rho line capacity float n line
timestep overflow steps since powerline overflow int n line

time before cooldown line remaining line cooldown steps int n line
time before cooldown sub remaining sub cooldown steps int n line

Topology
topo vec bus connection int dim topo

line status (dis)connection of a line bool n line

Curtailment

curtailment limit int n gen
gen p before curtail generator p before curtailment float n gen

curtailment mw amount curtailed in MW float n gen
curtailment ratio curtailed per generator float n gen

gen margin up generator margin up float n gen
gen margin down generator margin down float n gen

Redispatching
target value float n gen
actual value float n gen

Storage details
storage charge state of charge float n storage

storage power target power target float n storage
storage power power float n storage

storage theta voltage angle float n storage

Alarm is alarm illegal bool 1
time since last alarm int 1

last alarm int dim alarm
attention budget int 1

Table 1: Observation description
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redispatching action : increase the generator’s active setpoint value by either
augment or reduce the produced power on each generator. This will be
added to the value of the generators. (continuous)

curtailment : allows to give a threshold maximum value to renewable gen-
erators. They are defined as ratio of maximal production Pmax. For
example, a value of 0.5 limit the production of this generator to 50% of
its Pmax. (continuous)

raise line contingency alarm : allows to raise an alarm or not for each line
contingency considered in the network. (discrete)

Also see Appendix C for more explanations about some actions and termi-
nology such as substation and busbars.

The targeted assistant is further described in section 4
Note that because a dispatcher is only able to perform a limited number of

action at each step, each line and substation is subject to a “cooldown” to limit
the number of topological action on each element.

A.5 Rewards

Participants are free to design their own reward function. However, the final
ranking of the competition is done by computing both the cumulative network
operational cost, as well as the assistant cost.

Several pre-defined rewards also are accessible in Grid2Op in order to help
the participant.14.

L2RPN Reward The first standard reward, called L2RPNReward, was used
in the WCCI competition. It makes the sum of the ”squared margin” on each
powerline, where the margin is defined, for each powerline as:

powerline margin =

{
thermal limit − flow

thermal limit if flow <= thermal limit

0 otherwise
(9)

This rewards is then:
∑

powerline(powerline margin)2.

Assistant Reward While the reward described above focus on maintaining
the powergrid in a safe state, other considerations could be taken into account,
such as warning when the agent is not able to handle an unexpected future issue
on the grid. Towards this objective, the Assistant reward was defined: when
the environment is in a “game over” state (eg it’s the end) then the reward is
computed the following way:

1. if the environment has been successfully manage until the end of the time
series, then 1.0 is returned

14See Grid2Op documentation for the description of other rewards.
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2. if no alarm has been raised, then -1.0 is return

This reward was proposed for the past L2RPN ICAPS competition. For this new
edition, the alarm score defined in subsubsection 6.4.4 must be considered and
a new reward possibly be defined.

CombinedReward As the power network is a complex system using only one
reward might not be sufficient. Grid2op CombinedReward defined as the sum
ot the multiple rewards it is made of.

A.6 Assistant Representation

Following the objective of building trust between a digital agent and a human op-
erator, the agent has to communicate when doubting with its ability to operate
the network in the future. This element is called the assistant feature. Extending
the modelling made in a previous challenge [9], the trust objective for this com-
petition is modeled by two main elements : the raise line contingency alarm

and the attention budget. In this competition, the agent is asked to decide
whether or not to trigger an alarm, for each line that could be overloaded in the
1-hour future time window. This alarm is taken into account in the following
time steps (for the next 1-hour horizon) using the score described in subsubsec-
tion 6.4.4. More precisely, to raise an alarm the agent performs an action on the
environment, called the raise line contingency alarm action. This action is
binary and has dimension (n attackable lines, 1).

As we do not want the operator to be overwhelmed by too many (potentially
unnecessary) warnings and raising too many alarms could also harm the trust
in the assistant feature, we only want to raise a limited number of alarms.
Thus, the number of raisable alarms is limited by a given attention budget α
defined as an element of observation. Whenever an alarm is raised to require the
operator attention, it has a corresponding cost κ. n the other side, if the agent
does not require the operator attention, then the “attention budget” increases
by µ > 0. Also, to model the fact that human attention is limited, the attention
budget is capped by a maximum value A (for example A = 5) which ensured
that the agent cannot raise more than A

κ consecutive alarms. Indeed, it can
only raise an alarm if the attention budget is above cost κ. Otherwise it has to
wait to recover the necessary budget. In the observation space, along with the
attention budget are defined other metrics such as :

• last alarm : the previous alarm

• is alarm illegal : a boolean information about whether or not the
alarm can be raised (for example, an alarm defined in the action space
won’t be taken into account if the attention budget is too low)

• time since last alarm : the number of step since last alarm

• confidence rate : the number of cumulated non-raised alarms averaged
over the number passed steps until the current one.
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To sump up, at each time step, the alarm is only raisable on each attackable
line, in the limit of the given attention budget αt at that time t. The update
rule for the attention budget is :

1. αt+1 = αt−κ∗number of raised alarmedt if at least one alarm is raised

2. αt+1 = αt + µ otherwise

A.7 Customizable environment parameters

The L2RPN challenge offers multiple parameters that could be customized at the
creation of the environment during training. At test time however, parameters
are fixed with the parameter values listed in the documentation.

An easy parametrization for the environment could be using the following
parameters:

Difficulty = "0"

NO_OVERFLOW_DISCONNECTION: true

NB_TIMESTEP_OVERFLOW_ALLOWED: 9999

NB_TIMESTEP_COOLDOWN_SUB: 0

NB_TIMESTEP_COOLDOWN_LINE: 0

HARD_OVERFLOW_THRESHOLD: 9999

NB_TIMESTEP_RECONNECTION: 0

IGNORE_MIN_UP_DOWN_TIME: true

ALLOW_DISPATCH_GEN_SWITCH_OFF: true

ENV_DC: false

FORECAST_DC: false

MAX_SUB_CHANGED: 2

MAX_LINE_STATUS_CHANGED: 2

Difficulty = "challenge" (default)

NO_OVERFLOW_DISCONNECTION: False

NB_time step_OVERFLOW_ALLOWED: 3

NB_time step_COOLDOWN_SUB: 3

NB_time step_COOLDOWN_LINE: 3

HARD_OVERFLOW_THRESHOLD: 2

NB_time step_RECONNECTION: 12

IGNORE_MIN_UP_DOWN_TIME: true

ALLOW_DISPATCH_GEN_SWITCH_OFF: True

ENV_DC: False

FORECAST_DC: False

MAX_SUB_CHANGED: 2

MAX_LINE_STATUS_CHANGED: 2
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B Power grid operations

B.1 Physical Variables

Electricity is a form of energy involving the excitement of electrons in metallic
elements. In order to develop an understanding of electricity, it is necessary to
introduce the fundamental dimension of physical measurement electric charge.
Charge is a property of matter arising from atomic structure which is made
up of protons (positively charged), electrons (negatively charged) and neutrons
(neutral). It is measured in coulombs (C), a charge equal to that of 6.25× 1018

protons.
Charge induces a force with opposite charges attracting and the same charges

repelling. This force creates the ability to produce work and the electric poten-
tial or voltage, which is the potential energy possessed by a charge at a location
relative to a reference location. It is defined between two points and measured
in Volts, denoted with the symbol V. An electric current is a flow of charge
through a material, measured in Coulombs per second or Amperes (A) and
denoted with the symbol I.

The electrical power is given as the product of the voltage and the current.

P = V I (10)

Power is measured in Watts, denoted by the symbol W. In order to try to
simplify these electrical concepts, an analogy with a physical water system is
often used, while not quiet directly analogous, the current is similar to the flow of
water in a pipe, say in litres per second. Voltage would be analogous to a height
difference, say between a water reservoir and the downhill end of the pipe, or a
pressure difference. Intuitively, voltage is a measure of ‘how badly the material
wants to get there’ and current is a measure of ‘how much material is actually
going’. Power would be analogously produced by the force of water spinning
a hypothetical turbine that may rotate a wheel. Intuitively these phenomena
are related, increasing the voltage or current in a system increases the power
produced. Electrically, this relationship is captured by Ohm’s law:

V = IR (11)

A new variable is introduced here - R - which is the resistance of the ma-
terial the current is flowing through, analogous to the size of the water-pipe.
A smaller pipe makes it harder for large flows and it is the same with current
highly conductive materials allowing current to flow easily and poorly conduc-
tive materials (called insulators) preventing current from flowing. Whenever
an electric current exists in a material with resistance it will create heat. The
amount of heating is related to the power P and combining equations 10 and 11
gives:

P = I2R (12)
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Figure 19: A simple electricity network, showing the circuit nature of a power
network, the currents I flowing in the lines and the interconnectedness between
generators denoted g, customer loads denoted c and substation nodes denoted
s.

In order to produce a sustained flow of current, the voltage must be main-
tained on the conductor. This is achieved by providing a pathway to recycle
charge to its origin and a mechanism, called an electromotive force (emf), that
compels the charge to return to its original potential. Such a setup constitutes
an electric circuit. Again, to oversimplify by relating back to the water analogy
- if there is an open pipe in the circuit water will run out. Likewise, if there is a
break in an electric circuit, current will not flow but voltage will still be present
on the conductor. Simple electric circuits are often described in terms of their
constituent components; voltage sources, conductors and resistances. Complex
power networks can be described in terms of generation sources, network lines
and loads. A simple electrical power network analogous to a simple electric
circuit is shown in Figure 19.

Circuit analysis is the goal of estimating the parameters in a circuit given
a combination of the voltages, currents and resistances and the fundamental
Equations 10, 11 and 12. The more complex the circuit or network, the more
complex the analysis will be. Within a circuit, a series of laws known as Kirch-
hoff’s law also help us in the analysis:

• Kirchhoff’s voltage law: voltage around any closed loop sums to zero

• Kirchhoff’s current law: current entering and exiting any node sums to
zero

These principles can be applied at the micro-level to simple circuits, such
as plugging in an electric kettle where the element is the resistor or load, the
mains outlet is the voltage source and current is proportional to the voltage
and resistance of the circuit. Voltage is maintained throughout the circuit when
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Figure 20: An example of the dangers of overheating power-lines, by transport-
ing too much current, the metallic conductor heats and sags close to the ground
causing a flash over to ground and endangering human life.

it is plugged in and current flows from the plug outlet through the wire, into
the heating element and back to the plug outlet, completing the circuit. These
concepts can also be applied at the macro level, where a house or town could be
considered the load and a nuclear power station could be considered the voltage
and current source, which is interconnected to the load by power lines. The
electricity network is one large circuit, which is constantly satisfying these laws.

B.2 Line thermal limits and congestions

Heating can be desirable. Heating a resistive element is how an electric kettle
or heater works. It can also be undesirable - as is the case of power lines - where
the heat is energy lost and causes thermal expansion of the conductor making
them sag, or fall close to the ground or to people or buildings, as illustrated in
Figure 20. In extreme cases, such as a fault condition, thermal heating can melt
the wires. As we see from Equation 12 the amount of heating is proportional
to the square of the current, so increasing the current has a large effect on the
resistive losses. It is for this reason that when electricity is transported over
long distances, it is done at high voltages. Based on Equation 11, assuming
that the resistance of the line remains constant, to transport the same amount
of power, resistive losses are reduced by increasing the voltage and lowering the
current. This is the fundamental concept of electricity transmission.

Power will flow from source to load, around the network based on the re-
sistance of the lines in the network. A transmission line has an upper limit to
the amount of power that can flow through it before it will fail in service. This
limit is given by the thermal properties of the metallic materials, usually cop-
per or aluminium and also cooling and heating due to weather conditions (such
as wind, irradiance and ambient temperature). If too much power is forced
through the equipment for a long period, and the thermal limits are breached,
the equipment is likely to fail in service and be disconnected. In reality, this
means overhead lines sag closer to the ground, and may cause flashover as shown
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in Figure 20 (the cause of the 2003 blackout in North America) or very expensive
equipment such as transformers or cables will be damaged and explode. It is
better to disconnect the line than let it sag close to the ground. When the line
is disconnected, the same amount of power is still present on the network, but
one link has been removed. This means that the power will reroute itself to the
new most desirable path based on the resistance, but this rerouting may result
in another line or lines being overloaded. The challenge of network operation
(and the basis of this RL challenge) is to route the power around the network
in the most efficient manner, while avoiding overloads and cascading effects.

B.3 Possible unexpected events on the grid

Contingency can happens in the network, usually the loss of any element on
the network (a generator, load, transmission element). Loss of elements can
be anticipated (scheduled outages of equipment) or unanticipated (faults for
lightning, wind, spontaneous equipment failure). Cascading failures must be
avoided to prevent blackouts.

B.4 Operational considerations

The transmission network is controlled from a control centre, with remote ob-
servability from this centre to all transmission network elements. The network
operators can control most network elements such as lines and substations via
remote control command. The control centre also has visibility of all the gen-
eration sources and all the loads. Generation is controlled by the control centre
operator sending dispatch instructions to change the outputs. Some loads can be
controlled by the control centre, but, in general, the distribution system opera-
tors control switching of the load. For small to medium-sized countries, usually,
there is one control centre with responsibility for network control but for larger
countries like the USA, Canada there are multiple control centres that control
the network at a state or regional level on a functional basis. These control
centres coordinate their activities with their neighbouring control centres.

The network operator’s role is to monitor the electricity network 24 hours
per day, 365 days per year. The operator must keep the network within its
thermal limits, its frequency ranges and voltage ranges for normal operation
and contingency state operation as described above. For normal operation, the
operator has a range of actions at their disposal to manage the network within
its constraints, such as switching, generator dispatch and load disconnection.
For the contingency state operation, the operator must act ahead of time to
mitigate contingencies that may occur for the unexpected loss of any single
element, using the prescribed range of actions. The operator must also plan
the network operation for the loss of any element for a scheduled outage for
maintenance. The network must operate securely for the entirety of the planned
outage, not just for the moment the outage is taken. The operator must plan
for and manage the network within its limits at the system peak, i.e. the largest
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load demand of the day, the generation must be managed so that the generation
load balance (measured by the frequency) is maintained at the peak of the day.

The power network is operated by ensuring the three primary constraints
are met at all times, in all areas of the network.

• Thermal limits of transmission equipment are not breached (measured in
current with units of Amperes (A) or power with units MegaWatts (MW)).

• Voltage maintained within a defined range (measured in voltage, units of
Volts (V)).

• Generation and load balanced at all times (measured in power, units of
Megawatts (MW). The balance between load and generation is approxi-
mated by frequency measured in Hertz (Hz).

Operators also have to consider other operational rules such as a 1 to 3
number of actions from 5 to 20 minutes to limit the risk of human errors or
action failure. There are also cooldown times of 15 minutes or more to switch
again some breakers, as well as maximum 15 minute time-delay before overload
line-tripping by protections.

B.5 Cost of operations details

Energy Losses Cost We will recall that transporting electricity always gen-
erates some energy losses15 Eloss(t) due to the Joule effect in resistive power
lines at any time t:

Eloss(t) =
nl∑
l=1

rl ∗ yl(t)2 (13)

At any time t, the operator of the grid is responsible for compensating those
energy losses by purchasing on the energy market the corresponding amount of
production at the marginal price p(t). We can therefore define the following
energy loss cost closs(t):

closs(t) = Eloss(t) ∗ p(t) (14)

Topological action can increase or decrease ELoss(t). This already leads to a
continuous optimization problem to solve.

Flexibility Cost Then we should consider that operator decisions when tak-
ing an action can induce costs, especially when requiring market actors to per-
form specific actions, as they should be paid in return. Topological actions are
mostly free, as the grid belongs to the power grid operator, and no energy cost
is involved. However, redispatching actions involve producers which should get

15This energy loss corresponds to 2.2% of the total energy consumption on high voltage
power grids: https://bilan-electrique-2018.rte-france.com/loss-rate/?lang=en
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paid. As the grid operators ask to redispatch energy Eredispatch(t) or cur-
tail energy Ecurtailment(t) from solar or wind farms, some power plants will
increase their production by Eredispatch(t) while others will compensate by de-
creasing their production by the same amount to keep the power grid balanced.
Hence, the grid operator will pay both producers for this redispatched energy
at a cost credispatching(t) higher than the marginal price p(t) by some factor
α. Also agents can use batteries with energy Es(t) produced or consumed under
a fixed 10€/MWh, not driven by market prices:

cflexibility(t) = credispatching(t) + ccurtailment(t) + cstorage(t)

= 2αp(t)(Eredispatch(t) + Ecurtailmenet)(t) + 10
∑

|Es(t)|, α ⩾ 1

(15)

Blackout cost In case of a blackout, the cost cblackout(t) at a given time t
would be proportional to the amount of consumption not supplied Load(t), at
a price higher than the marginal price p(t) by some factor β:

cblackout(t) = Load(t) ∗ β ∗ p(t), β ⩾ 1 (16)

Notice that Load(t) >> Eredispatch(t), Eloss(t) which means that the cost of a
blackout is a lot higher than the cost of operating the grid as expected. It
is even higher if we further consider the secondary effects on the economy16.
Furthermore, a blackout does not last forever and power grids restart at some
point. But for the sake of simplicity while preserving most of the realism, all
these additional complexities are not considered here.

B.6 Upcoming Operational Challenges for an assistant

In the wake of the current energy transition, along with economy and technol-
ogy shifts, the power grid is subject to new changes. As described in Figure 21,
many changes outside the grid are having significant operational impacts. For
instance, digitization of procedures, social networks, new media consumption
patterns, adaptation to climate change, are modifying how end-users consume
electricity. These new elements create new electricity usages, eventually leading
to new grid dynamics. Moreover, the grid itself is evolving with more mi-
cro grids, renewable energies, distributed power plants and storage capacities
connected to the grid. From a market perspective, higher energy prices, new
market participation and mechanisms, the sharing of open data and information
are having a significant impact on power grid operations.

Thus, the grid is increasingly pushed to its operational limits where more
congestions, along with higher operational uncertainty and faster evolutions of
the system dynamics occur. To keep operating the grid safely in the future,

16More information can be found on this blackout cost simulator: https://www.

blackout-simulator.com/
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Figure 21: New operational needs under energy transition that is impacting
operations along different dimensions. (Image from [12])
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we need to have more flexibility in operations and a better and faster decision-
making process.

In this new context, the current grid monitoring trough various screens in
control room (see Figure 2) is not sustainable. We need to shift from the su-
pervision paradigm, where a lot of information are displayed to the hypervision
one where synthetic information are displayed to the “right person at the right
time“ of their decision process. To do so, in a near future, all theses new grid
operational information and actions could be centralized using an assistant as a
unified interface. This central element of the future grid operation could either
gather information from various sources, make recommendations to the opera-
tor, and contextualize a given situation. The role of future assistants has been
further detailed in section 4.

C Available Operational Flexibilities

The powergrid operator’s role is to monitor the electricity network 24 hours
per day, 365 days per year. The operator must keep the network within its
thermal limits, its frequency ranges and voltage ranges for normal operation
and contingency state operation as described above. For normal operation, the
operator has a range of actions at their disposal to manage the network within
its constraints, such as switching, generator dispatch and load disconnection.
For the contingency state operation, the operator must act ahead of time to
mitigate contingencies that may occur for the unexpected loss of any single
element, using the prescribed range of actions. The operator must also plan
the network operation for the loss of any element for a scheduled outage for
maintenance.

Constraints on the system, such as line congestions are alleviated in real-
time by powergrid operators using a range of remedial actions, from least to
most costly as follows:

• Switching lines on the network in or out

• Splitting or coupling busbars at substations (see Figure 22) together.
This means a node can be split into two elements or connected together
as a single element

• Redispatch generation to increase or reduce flows on lines

• Load shedding disconnecting some load from the grid

From a cost perspective, the disconnection of load should be avoided due to
the disruption to society, business and daily life. Redispatching generation can
also be expensive. The electricity is managed by a market, based on the cost
per unit of energy supplied. If the network operators need to redispatch expen-
sive generation, this can be sub-optimal from a market perspective and cause
increased costs to customers. To provide operational flexibility, substations are
usually designed so that they can be separated into two or more constituent
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Figure 22: 3 categories of flexibility with different cost and spread

parts. Coupling a substation can serve to reroute power in a network and is
an option to alleviate line overloads. Switching lines and coupling busbars at
substations are the least costly option to alleviate thermal overloads on the
network. There is considerable operational flexibility that is under-utilized on
power networks that can be released by switching actions and topology changes.
This network flexibility is easy to implement and the least costly option. One
of the goals of the RL challenge is to explore the range of switching options
available and to utilize topology changes to control power on the network.

The network operators can control most network elements such as lines and
substations via remote control command. The control centre also has visibil-
ity of all the generation sources and all the loads. Generation is controlled by
the control centre operator sending dispatch instructions to change the outputs.
Some loads can be controlled by the control centre, but, in general, the distribu-
tion system operators control switching of the load. For small to medium-sized
countries, usually, there is one control centre with responsibility for network
control but for larger countries like the USA, Canada there are multiple control
centres that control the network at a state or regional level on a functional basis.
These control centres coordinate their activities with their neighbouring control
centres. In France, there were 8 of them , now reduced to 3 but with other kind
of control room appearing.
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